From Visual Schematic to Tactile Schematic Maps

Christian Graf Cognitive Systems University of Bremen christian@maps4vips.info

Falko Schmid
Transregional Collaborative Research Center
SFB/TR 8 Spatial Cognition
University of Bremen
schmid@sfbtr8.uni-bremen.de

Agenda

- Review of schematization concepts proposed for Small Display Visual Maps
- Similarities between Small Display Visual Maps and Tactile Environment Maps
- Investigation of the applicability of concepts from Small Display Visual Maps to the Tactile Environment Maps

Small Display Visual Maps and Schematization

- Navigation with GPS based computational wayfinding systems
- Presentation of visual maps on small (interactive) displays to support wayfinding tasks (i.e. route based)
- Small displays pose challenges to usage of maps

Geographic Information on Small Displays

Small Displays
Scaling
Panning

Small Display Visual Maps and Schematization

- Navigation with GPS based computational wayfinding systems
- Presentation of visual maps on small (interactive) displays
- Small displays pose challenges to presentation
- Need for systematic schematization of maps
- Schematic Maps
 - capture the abstraction of space that is pertinent in human spatial cognition
 - focus on relevant features for a task and leave out unneeded details

Schematization Example

Review: LineDrive (Agrawala & Stolte, 2001)

- Adapt the scale of route elements to the corresponding wayfinding activity
 - Segments with low activity are schematized/shortened
 - Segments with high activity are detailed

Review: Focus Map (Zipf & Richter, 2002)

- Adapt the visual prominence of map features depending on their proximity to the route
 - Close segments are shown
 - Segments far away are faded out

Review: Route Aware Map (Schmid, Richter, Peters, 2010)

 Show main route and alternative routes from an origin to a destination to support correction of routing errors

Review: YAH^x Map (Schmid et al., 2010)

- Adapt the map to <u>prior knowledge</u> by leaving out details in the regions visited before
- Use stable frame of reference with salient landmarks

Review: ZoneZoom (Robbins et al., 2004)

 Use a discrete recursive zoom functionality to access details on constant scales

Summary of Schematizations in Small Display Visual Maps

Name of Map	Concept (Überarbeiten: Argumentation)
LineDrive	Shorten Segments – better: Activity Based
Focus Map	Adjust to Distance
Route Aware Map	Show Alternatives
YAH ^x Map	Consider Prior Knowledge Show stable Frame of Reference
ZoneZoom	Provide Static Relations
Halo & Wedges	Show Stable FoR
μМар	Consider Prior Knowledge

Tactile Environment Maps

- Map entities represented by tactually prominent entities
- Used for pre-trip survey knowledge acquisition
- Problem with tactile maps: Low resolution
- Solution: Schematization!?

The Relation of Small Display Visual Maps and Tactile Environment Maps

- Characteristics of problem space are similar
 - Low resolution: 20dpi & Display size: A4 or A3
 - High resolution: >72dpi '& Display size: some inches²
- Usage is different:
 - Route vs. Survey
 - Path following vs. path finding
 - Predefined goal vs. dynamic goal assignement
- Transfer of solutions from Small Display Visual Maps to Tactile Environment Maps are considered

Considerations About the Applicability of Concepts in TEM

Concept	Result of Considerations
Shorten Segments	Metric information often not needed
Adjust to Distance	⊗ Fading out might be confusing
Show Alternatives	Might confuse because of lacking survey
Consider Prior Knowledge	Abstraction of known parts could free space for more details about unknown parts
Show Stable Frame of Reference	© Global landmarks could ensure between- map consistency and reference
Provide Static Relations	© Defined transitions between maps could add allignement support

Summary

- Review of concepts for schematization for Small Display Visual Maps
- Introspective consideration of transferring those concepts to Tactile Environmental Maps: Shorten Segments

Consider Prior Knowledge

Show Stable Frame of Reference

Provide Static Relations

 Further experimental investigations need to be done to ground the theoretical considerations

Thank you! Questions?

christian@maps4vips.info
schmid@sfbtr8.uni-bremen.de

Bibliography

Agrawala, M., Stolte, C.: Rendering effective route maps: improving usability through generalization. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. pp. 241–249. ACM, New York, NY, USA (2001)

Schmid, F.: Knowledge based wayfinding maps for small display cartography. Journal of Location Based Services 2(1), 57–83 (2008)

Schmid, F., Kuntzsch, C., Winter, S., Kazerani, A., Preisig, B.: Situated local and global orientation in mobile you-are-here maps. In: Proceedings of the International Conference on Mobile Human-Computer Interaction 2010, MobileHCI 2010, Lisboa, Portugal. ACM (to appear)

Schmid, F., Richter, K.F., Peters, D.: Route aware maps: Multigranular wayfinding assistance. Spatial Cognition and Computation 10(2), 184–206 (2010)

Robbins, D.C., Cutrell, E., Sarin, R., Horvitz, E.: Zonezoom: Map navigation for smartphones with recursive view segmentation. In: Costabile, M.F. (ed.) Proceedings of the Working Conference on Advanced Visual Interfaces (AVI). pp. 231–234. ACM Press, Gallipoli, Italy (2004)

Zipf, A., Richter, K.F.: Using focus maps to ease map reading — developing smart applications for mobile devices. KI Special Issue Spatial Cognition 02(4), 35–37 (2002)